Lesson Title: Solar System

Curriculum Outcomes:

211-3 work cooperatively with team members to develop and carry out a plan, and troubleshoot problems as they arise 312-2 describe and classify the major components of the universe

312-4 describe and explain the apparent motion of celestial bodies

Learning Objectives:

- 1. Students will demonstrate an understanding of the parts of the solar system as well as their relationship to one another.
- 2. Students will show an understanding of relative sizes and distances between each planet within the solar system.

Materials:

- Sun & Planet nametags (or pinnies, objects, etc. to represent each of the 9 planets)
 Sun, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto
- Metronome (or some way of keeping a steady pace)
- Blowhorn
- Measuring tape (100m or 2 x 50m)

Preparation beforehand:

- You will need a large area (soccer or football field) to accurately describe the relative sizes and distances
- Lay the measuring tape(s) so that you have 100m of space
- Relative distances, sizes and orbit speeds can be found in the table attached at the end of this document (if you have fewer than 28 students, some numbers of the larger planets can be adjusted)

Introduction:

- 1. Discuss features of the solar system with the students (possibilities):
 - Order, names, and compositions
 - Sizes (comparison)
 - Relative distances from the sun (can we accurately depict distances in textbook? Why/why not?)
 - Planetary travel paths (elliptical orbit)
 - Years on each planet (what is a year? Revolution/orbit around the sun vs. rotation/spin on axis)
- 2. Explain what a kinulation is (broken up into kinesthetic and simulation). Tell them that these are used to help students learn difficult concepts that are otherwise difficult to picture. It allows students to become part of the demonstration, and therefore easier to remember and learn. Ask students if they would like to try one. Proceed to the large open space (outside).

Solar System (relative size and distances):

- 1. Have students grouped into each planet according to the relative sizes indicated in the "Preparation Beforehand." Talk to the students about how the number of students in each planet indicates a larger or smaller size, but it is difficult to make exact because of the small number of students.
- 2. Instruct students to position themselves (as planets) on the measuring tape where they feel they would be (in the correct order).
- 3. Once students have done this, have them remember the meter marker their planet was located at.
- 4. Bring students in for a discussion on how most likely they spaced themselves out pretty evenly. Some groups of students will correctly place a large space between the inner and outer planets for the asteroid belt.
- 5. Give students their actual relative distance location according to the numbers above (Mercury 1m, ...).
- 6. Ask students to try to revolve around the sun as their planet would do (do not indicate a path or pace).
- 7. Bring students in to discuss any difficulties (some students will have had trouble keeping equal spacing from the sun, some will have had troubling keeping a consistent pace, etc.).
- 8. Have students do the revolution again, this time instruct them to try to keep an equal distance from the sun, and walk to a specific pace (using the metronome or a second counter and the orbit speeds in the table below).
- 9. Have students revolve around the sun for 2-3 minutes and tell them to count how many times they circle the sun.
- 10. Bring students back in and discuss how many times each planet revolved around the sun (and whether

they expected more or fewer revolutions than other planets). Bring up the topic of years on each planet, and how many years pass by in 1 Earth year on each planet.

11. Students can also discuss whether planets spin on their axis while rotating, whether they ever all lineup, as well as whether they all spin clockwise or counter-clockwise.

Conclusion – Possible wrap-up questions:

- 1. What benefits do you see in becoming part of the demonstration of the concept?
- 2. Is anything clearer to you because of being involved?
- 3. What would happen if planets moved closer or further from the sun? Why do the planets never all line up?

rol a class of 28 Students.	
Mercury	Venus
Size = 1 student	Size $= 2$ students
Distance $= 1m$	Distance $= 2m$
Orbit Speed = move on every beat	Orbit Speed = move on every beat
Earth	Mars
Size = 2 students	Size= 1 student
Distance = 3m	Distance $= 4m$
Orbit Speed = move on every beat	Orbit Speed = move on every 2^{nd} beat
Jupiter	Saturn
Size = 7 students (6)	Size = 6 students (5)
Distance $= 13m$	Distance $= 24m$
Orbit Speed = move on every 4 th beat	Orbit Speed = move on every 5^{th} beat
Uranus	Neptune
Size = 4 students	Size = 4 students
Distance $= 49m$	Distance $= 76m$
Orbit Speed = move on every 7^{th} beat	Orbit Speed = move on every 13^{th} beat
Pluto	
Size = 1 student	
Distance $= 99m$	
Orbit Speed = move on every 6^{th} beat	

For a class of 28 Students: